
IJSRSET1736213 | Received : 01 Nov 2017 | Accepted : 15 Nov 2017 |  November-December-2017 [(3)8: 136-141] 

 

© 2017 IJSRSET | Volume 3 | Issue 8 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099 
Themed Section: Engineering and Technology 

 

 

136 

Real Time Gaze Estimation for Medical Field using Normally 
Webcam with OpenCV 

Alhamzawi Hussein Ali mezher  
∗Faculty of Informatics, University of Debrecen, Kassai ut 26, 4028 Debrecen, Hungary  

 

 

ABSTRACT 
 

In this work we discuss how we will tracking the gaze and plot a normally diagram that will give us information 

about the Patient situation for example if she/he is angry or may have some stress so we can postponed giving the 

medicine for a while and we could wait until her/his situation will be better and then we can give her/him the 

medicine . Another practical implication of this project is for investigation like by giving the suspected person a 

picture of the possible contributors in the crime and by tracking the gaze , a diagram will be drawn for where she/he 

have started looking at the picture and how much time he spent looking at each individual hence helping to identify 

the other partners in the crime which will be beneficial in shortening the time of investigation and getting a more 

scientific based results. 

Keywords: Gaze Estimation , Opencv , Haar Cascade. 

 

I. INTRODUCTION 

 

Gaze estimation is the process of measuring either the 

point of gaze or the motion of an eye relative to the head. 

The device to measure gaze is called eye tracker [1]. 

Tracking eye gaze of an individual has numerous 

applications in many domains. Gaze tracking is a 

powerful tool for the study of real time cognitive 

processing and information transfer-as human attention 

can be deduced in many cases by following gaze to the 

object of interest. Latest human-computer interacting 

devices use person‟s gaze as input to the computer in the 

same way as using a mouse. Gaze estimation has also 

found usage in the auto industry for monitoring driver 

vigilance, based on driver‟s gaze patterns [2]. Eye gaze 

also has applications in the medical field, for example 

studying the behaviors of patients suffering from 

neurological, communication and vision disorders like 

pervasive developmental disorder and autism spectrum 

disorder. Studies show that during a typical interaction 

with another person, rather than focusing on the eyes, 

children with ASD (Autism Spectrum Disorder) tend to 

focus more on mouth, bodies and other objects at  

 

 

the scene [3-5]. Thus the gaze pattern could serve as a 

useful tool for early detection of ASD. Most of the 

accurate eye tracking devices available today are 

expensive because they require high quality cameras and 

specially designed equipments like wearing custom 

designed glasses, high speed machines etc. Some of the 

devices require trained individuals in collecting the raw 

data and for conducting experiments. The techniques 

they use mostly concentrate on the reflection of the IR 

light on the pupil and track its position using 

mathematical analysis. In our paper, we tried to show 

that the iris and sclera can also be used for gaze 

estimation and they can be detected easily. The objective 

of this paper is to devise a simple web-cam based eye 

tracking algorithm that can provide reasonably good 

accuracy.  

 

Gaze tracking has been widely used in a variety of 

applications from tracking consumers gaze fixation on 

advertisements, controlling human computer devices, to 

understanding behaviors of patients with various types 

of visual and/or neurological disorders such as autism So 

we solve this problem by using simple and cheap 

hardware that Affordable every person to create gaze 

tracking systems. In this system we try to prove that is 

possible to create a gaze tracking system by using a 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

137 

regular web camera and the free, open source Computer 

Vision library OpenCV. 

 

 
 

Figure 1: Gaze tracking system viewer  

 

II. SYSTEM MODEL AND RESULTS 
 
In this paper we use a laptop webcam to track a user‟s 

gaze location on the screen, for use as a user interface. 

At a high level: we use a variety of image-processing 

techniques to produce probability estimates for the 

location of each pupil center. We overlay and multiply 

these probability matrices (effectively applying direct 

inference at every pixel) to estimate the most likely 

pupil position given the probabilities from both eyes. 

We then use least-squares to train a transformation from 

pupil position to screen coordinates. Our algorithm can 

estimate gaze location in real time, within approximately 

3cm in favorable conditions. Our algorithm begins by 

using the OpenCV library‟s implementation of the Haar 

cascade detector [1] to locate a face and the two eyes in 

a video frame: 

 

 
Figure 3: Haar Cascade detection of face and eyes 

 

We use known face geometry to remove spurious 

eye and face detections, producing very reliable 

bounding boxes around the user‟s eyes. 

2.1 Finding Pupil Centers: 

 

To estimate gaze direction, we must find the pupil center 

within the bounding box for each eye. For this, we have 

implemented a gradient-based method [2] [3] which uses 

the fact that image gradients at the border of the iris and 

pupil tend to point directly away from the center of the 

pupil. It works as follows: 

 

 
 

Figure 4: Left to right: A blurred eye image; the areas 

considered dark enough to be pupil candidates; our 

estimates of center probability in the regions that were 

dark (white=highest probability). Note the spurious 

peak on the left. 

 

 
 

Figure 2: Evaluating candidates for pupil center 

 

If we make a unit vector di which points from a given 

image location to a gradient location, then its squared 

dot product with the normalized gradient vector gi, 

expressed as (di
T
gi)

2
, will be maximized if we are at the 

pupil center. We do this calculation for each image 

location and each gradient. The pupil center c* is the 

location that maximizes the sum of these dot products: 

 

        C* = argc max { (di
T 

gi)
2
 } 

        di =    ,      : ǀǀgiǀǀ2 =1 

 

For computational efficiency and accuracy, several 

refinements were necessary: 

We only do the pupil-center-probability calculation in 

the dark parts of the image, because the pupil is known 

to be dark. (To do this, we threshold on pixel brightness, 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

138 

then dilate the image to expand the allowable areas 

slightly. We must dilate so that our search region 

includes parts of the pupil where there are bright 

reflections.) 

 

Eyelashes and shadows produce unwanted gradients, 

which can produce spurious peaks in the pupil-center 

probability image. Our desired gradients are fairly 

strong, so we discard all gradients whose magnitude is 

below the mean. 

 

Additionally, we enforce the prior knowledge that the 

pupil is circular: when calculating pupil-center 

probability at each pixel, we build a histogram of 

distance to each gradient location in the image. Only 

gradients near the most-common distance are included. 

Thus, only the dominant circle of gradient locations 

around a candidate point contributes to its pupil-center 

probability. We also discard gradients which are outside 

the expected min and max iris radius (based on the size 

of the eye, as found by the Haar cascade detector). 

 

2.2 Joint Pupil Probability from Two Eyes 

 

we improved the reliability of our estimate by 

combining multiple probability estimates. Specifically, 

we designed a method to combine the estimates from the 

two eyes: we overlay the probability image from the 

right eye onto the left eye and multiply the two 

probabilities. Eye pupils move together, and therefore 

appear at the same place in the two images. But other 

(noise-producing) parts of the eye are mirrored about the 

centerline of the face, and therefore appear at different 

places in the two images. 

 

 
Figure 5 : Camera-left eye probabilities are overlaid on 

camera-right probabilities using the average pupil-to-

pupil vector from previous frames. Their product has 

much less noise 

Combining the two eye estimates was not 

straightforward. Because the eye bounding boxes are 

inaccurate, they cannot be used to align the probability 

images. We used the insight that, if head position is 

steady, the vector from the left eye‟s pupil to the right 

eye‟s pupil is almost constant as the pupils move 

around. (Especially when the eyes are focused on a 

plane, such as a computer monitor.) Therefore, if any 

image region that includes the left eye is shifted by that 

vector, the left pupil will end up on top of the right 

pupil. Thus, we can combine the eye probability 

estimates without requiring any absolute reference 

points on the face. (We blur both images slightly before 

the multiplication, so that an error of a few pixels in the 

pupil-pupil vector still yields a strong peak near the true 

pupil.) 

 

The pupil-to-pupil vector can be obtained from the noisy 

estimates of individual pupil positions. We simply 

applying a very slow moving-average filter to reject 

noise in the estimate of the vector. 

 

This method proved very effective. If the pupils are 

visible to the camera, the joint pupil estimate is within 

the iris nearly 100% of the time. 

 

2.3 Reference Point for Eye Direction 

 

Knowing the coordinates of the pupils is not enough, by 

itself, to find gaze direction. In order to attach meaning 

to the pupil coordinates, we need to express the pupil 

coordinates in terms of an offset from some reference 

point on the face. The Haar cascade bounding boxes for 

the face and eyes are not steady enough to serve as 

reference points, even when averaged together. So we 

experimented heavily with several other possible 

reference point methods: 

 

Our initial approach was simply to draw a blue dot 

between the eyes with a dry-erase marker, and apply 

our single-pupil-finding code to find the center of the 

blue 

 

 

 

 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

139 

 
 

Figure 6: The debugging blue-dot reference point on 

one of the authors. It is found within 1 or 2 pixels of 

accuracy, and is useful for testing. Though I blue 

myself for testing, I would not expect users of a 

system to do so. Thus, a more natural reference point 

is required. 

 

The corner (tear duct) of the eye would be good 

reference point geometrically, because its distance 

from the camera is the same as the pupil, so head 

rotation would affect it less than other points. 

Unfortunately, our implementation of an eye-corner 

detector was very unreliable. Building an eye-corner 

detector is nontrivial, because the corner of the eye 

looks very different depending on whether the test 

subject is looking left or right. Its appearance also 

varies greatly with light direction. We also tried to 

build an eyebrow detector, but since that was also 

unstable and error prone, we tried to invent a better 

approach. 

 

A perfect reference point should be as stable as possible, 

but a key insight (which has not yet appeared in any 

paper we are aware of) is that the facial reference point 

does not need to be based on any specific facial feature. 

With that in mind we implemented a “virtual reference 

point” tracking algorithm, based on many image 

keypoint descriptors. At a high level, our virtual 

reference point is measured relative to many distinct 

points on the face, and in each frame, each of these 

points 'votes' on where they expect the virtual reference 

point to be. We weight the votes according to stability 

and then take a weighted average over the keypoints. 

 

 
 

Figure 7: The magenta circle is the virtual reference 

point. 

 

III. RESULTS AND DISCUSSION 
 

The numbers are unique IDs of SURF keypoints. 

 

A more technical description follows: 

 

We arbitrarily choose a 'virtual reference point' on 

system startup (we chose to use the average of the two 

eye bounding boxes). Then, we locate and uniquely 

identify image “keypoints” using the popular SURF 

algorithm [4]. We only use keypoints which are inside 

the face bounding box and outside the eye bounding 

boxes, to discard the pupils and the background. For 

each new keypoints, we record the vector from each 

keypoint to our virtual reference point (this vector will 

be immutable for the rest of the session). In each frame 

after that, if the same keypoint appears again, we 

compute its “vote” for the position of the virtual 

reference point by taking the keypoint‟s instantaneous 

position plus its saved immutable vector. The votes for 

the virtual reference point are combined in a weighted 

average. Each keypoint‟s vote is weighted by the 

number of consecutive frames that we've found that 

keypoint. (This is a simple way to ensure that the virtual 

reference is based on stable keypoints.) 

 

This method of averaging the keypoint position + 

immutable vector, rather than directly averaging the 

keypoint positions, is important because keypoints 

appear and disappear due to noise and minor head 

movements. This would cause a direct average of 

keypoint positions to jump around. Our method 

produces a very steady virtual reference point even 

while keypoints are appearing and disappearing. 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

140 

Aside: For matching keypoints between frames, we use 

the standard image-descriptor matching guidelines 

pioneered by David Lowe [5]. At each keypoint 

(distinctive blobs or corners in the image) a descriptor 

vector is computed which characterizes the appearance 

 

of that image region. The keypoint descriptors from the 

current frame are compared to all previously-seen 

descriptors using Euclidean distance. Two SURF 

descriptors „a‟ and „b‟ are considered to match if a (from 

set A, the current frame) is closer to b (from set B, the 

history) than to the next-closest keypoint in B, by some 

margin. This is also applied the other way around (by 

requiring bijective matching in this way, we reduce false 

positives). 

 

3.1 Training the transformation from eye to screen 

coordinates: 

 

With a steady reference point, we can reliably find the 

eye gaze direction relative to the reference point. We 

must next convert gaze direction to a pixel position on 

screen. We used the Pygame library to produce a data-

gathering tool in which the user looks at the mouse 

cursor and clicks, and the algorithm records the 

crosshair location and the current estimate of pupil offset 

to produce one data point for the training set. 

 

After taking several such data points, we use the Numpy 

library‟s least-squares solver to produce a transformation 

matrix which relates pupil offset (x,y) to screen position 

(pixelX, pixelY). We also input quadratic features, 

because the relationship between eye offset and screen 

location is not entirely linear (as the eye looks more to 

the side, small movements of the eye correspond to 

larger movements on the screen). So our input feature 

vector is [x, y, 1, x2, y2, xy]. We use least squares to 

train a 2 x 6 matrix H such that 

 

Feature*H=(pixelX,PixelY) 

 

Unfortunately, the least squares fit is strongly degraded 

if there are outliers in training data (such as when the 

user‟s eyes were closed and the pupil position is 

incorrect). Therefore, we use the RANSAC (Random 

Sample Consensus) algorithm to reject outliers. 

RANSAC works by choosing a random small subset of 

the training data, training an H matrix, and using only 

the training data that is well-described by H to refine H. 

Many such H candidates are computed (800 in our case), 

and the best-performing one is chosen. 

 

We retrain the algorithm after each click by the user. 

After approximately 10 to 20 clicks, our algorithm can 

estimate gaze along the top of the screen very well. 

When looking at the very bottom of the screen, a user‟s 

pupils are usually not visible to a webcam, so the 

algorithm 

fails. We therefore ignore the very bottom region of the 

screen in the testing below. 

 

3.2 Measurement of Results 

 

Inadequate lighting conditions, the system performs 

quite well, as shown in the plot below. 

 

 
Figure 8 : Red indicates true click position, and blue 

indicates the system's predicted eye gaze location at the 

time of that click. The prediction is made by 

transforming pupil offset with the H 

matrix discussed previously 

In a test of the system with 43 clicks using a webcam 

with resolution 640 x 480, the median error between 

predicted and actual click position was 69 pixels, and the 

mean was 79 pixels. Most of the error was in the vertical 

direction as evident from Figure 7. This is because the 

system still has trouble locating the exact center of the 

pupil vertically. The horizontal median error was only 

28 pixels. 

 

With our test setup, the overall mean error of 79 pixels 

corresponds to 2.8 degrees of angular error in estimating 

gaze direction. Commercial services which use webcams 

claim accuracies of 2 to 5 degrees. So, our system seems 

to be comparable in quality to commercial eye-tracking 

systems. After training, our system can predict gaze 

location quite well in real time: 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 
 

141 

 
Figure 9 : diagram for patent person he was little 

confuse 

 

IV. ACKNOWLEDGMENT 
 

The work of H.AlHAMZAWI was supported by the 
Stipendium Hungaricum Scholarship. 

 
 

V. CONCLUSION 

 
Functionalities of eye tracking system is to detect the 

face and the eyes and tracking them , then getting the 

position of the gaze and drawing diagram for these 

points to detect where is the user looking and were 

successfully , in our paper we detect and tracking the 

gaze using low resolution camera using the cheap 

equipment and easy algorithm to get the nice and almost 

exactly result that help the doctors to know in which 

situation the patient now to work with (his/her) 

smoothly, this save for us the time and the cost with 

cheaper and easier pieces of equipment. 

 
VI. REFERENCES 

 

[1] V. a. Jones, "Robust Real-time Object Detection," 

2001. 

[2] V. a. Gevers, "Accurate Eye Center Location and 

Tracking Using Isophote Curvature," IEEE 

Conference on Computer Vision and Pattern 

Recognition, 2008. 

[3] F. T. a. E. Barth, "Accurate Eye Centre 

Localization by Means of Gradients," [Online]. 

Available: http://www.inb.uni-

luebeck.de/publikationen/pdfs/TiBa11b.pdf . 

[4] A. E. T. T. L. V. G. Herbert Bay, "SURF: Speeded 

Up Robust Features," Computer Vision and Image 

Understanding, vol. 110, no. 3, 2008. 

 

[5] D. G. Lowe, "Distinctive Image Features from 

Scale-Invariant Keypoints," 2004. 

[6] J. C. a. Q. Ji, "Probabilistic Gaze Estimation 

Without Active Personal Calibration," [Online]. 

Available: 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber 

=5995675. 

[7] D. H. a. Q. Ji, "In the Eye of the Beholder: A 

Survey of Models for Eyes  and Gaze,  URL : http:// 

ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=599 

5675.  


